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ISOMETRIES B E T W E E N  B A N A C H  SPACES 
OF LIPSCHITZ FUNCTIONS t 

BY 

E. MAYER-WOLF 

ABSTRACT 

The Banach spaces Lip" (S, A), lip ~ (S, A), Lip ~ (S, A; so) and lip ° (S, A; so) of 
Lipschitz functions are defined. We shall identify the extreme points of the unit 
balls in their corresponding dual spaces and make use of them to present a 
complete characterization of the isometries between these function spaces. 

I. Introduction and definitions 

T h r o u g h o u t  this p a p e r  the  fo l lowing no ta t ion  will be  adop ted .  If E is a Banach  

space,  B~ is its unit  ball  and  E '  its dual  space,  and  if A C E then e x t ( A )  is the  

set of all the  ex t r eme  poin ts  in A.  W e  shall  dea l  with real  funct ions  def ined  on a 

compac t  met r ic  space  (S, A). Such a funct ion f satisfies a Lipschi tz  condi t ion  of 

o r d e r  a,  O<a_- - -1 ,  if 

I f ( s ) - f ( t ) l <  oo 
(1.1) [Ifll, = sup A~(s , t )  " 

W e  define:  

Lip"  (S, A) = {f :  S ~ R / f  satisfies (1.1)}. 

E n d o w e d  with the  no rm ]]f][ = max (]]f][~, [If[I=), Lip" (S, A) i s  a Banach  space.  

Of  special  in teres t  a re  the  funct ions  f which satisfy 

[ f ( s ) - f ( t ) [  
(1.2) lira sup = O. 

8~o o<a°ts,,)<~ A~(S, t)  

Namely ,  we def ine 

* This paper is a part of the author's M.Sc. thesis which was prepared under the guidance of 
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l ip: (S, A) = { / E  Lip" (S, A)/[ satisfies (1.2)}. 

It is easy to check that lip: (S, A) is a closed separable subspace of Lip ~ (S, A). 

Alternatively one can choose an element soE S and define: 

Lip ° (S, A; So) = {f : S ~ R/[ (So)  = 0 and / satisfies (1.2)} 

and 

lip" (S, A; so) = {f E Lip ~ (S, A; So)/[ satisfies (1.2)}. 

Endowed with the norm II/llo, Lip" (S, A; So) becomes a Banach space of which 

lip: (S, A; So) is a closed separable subspace. It is not hard to see that if card S = 

then Lip" (S,A) and Lip: (S, A; so) are isomorphic. (Lip ° (S, A; so) is clearly 

isomorphic to a hyperplane of Lip: (S, A), and the latter is isomorphic to all of its 

hyperplanes since it contains a subspace isomorphic to l: ([5, theorem 1]).) 

Similarly it follows from [5] that if a < 1, l ip"(S,A) contains a subspace 

isomorphic to co and is therefore isomorphic to lip ~ (S, A; so). 

If X is one of the four spaces defined above, for every s E S, ~, E X '  will 

denote the evaluation functional, and for every pair of distinct elements (s, t) in 

S, 6s., E X '  will be defined by 

f ( s )  - f ( t )  V f  @ X.  
~"q)= a°(s,t) 

Whenever  reference is made to one of these functionals, it will be clear from the 

context which space X will be. 

The isomorphic classification of the Banach spaces of Lipschitz functions has 

not yet been solved. It is conjectured that for 0 < a < 1, Lip ~ (S, A) is isomorphic 

to l= and lip ~ (S, A) is isomorphic to co. This has been proved for S a compact set 

in R"  (see [1]). On the other hand, it has been observed by Y. Benyamini and P. 

Wojtaszczyk that it follows from J. Kislyakov's paper [7] that Lip' (U, d) is not 

isomorphic to l= (I 2 being the unit square in R 2 with its natural metric d). 

Another  counterexample for a = 1 can be found in [6]. 

In the present paper we deal with the isometric classification. We characterize 

the isometrics between pairs of spaces of the same type, for each of the four 

types defined above (for a < 1). Some particular cases have already been 

studied. In [2] the metric spaces were taken to be circles of unit circumference in 

R z and it was shown that all isometrics R : lip ~ (H, d ) - *  lip ~ (K, p) are given by a 

composition with a distance preserving map ~0 :K--~/4,  i.e. 

Tf (x  ) = 0/(~0 (x)) V / ~  lip ~ (H, d) 
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where O = - 1. The same conclusion was obtained in [9] where the metric spaces 

were general Riemannian manifolds with the Riemannian metric. 

In Section 3 we generalize these results by considering general compact metric 

spaces. We explicitly point out certain isometries which are not "composition 

isometries", as mentioned above. (In this case the involved metric spaces possess 

a very particular structure; we call such spaces 1-centered metric spaces.) We 

then show that all the isometries are actually generated, in a certain sense, by the 

"composition isometries" and this second type of isometries. 

We also study the isometries T : l i p  ° (H, d; x0)---~ lip ~ (K, p; u0) which are 

somewhat simpler than those in the previous case. We then proceed to 

characterize all the isometries 

T:Lip~(H,d)--~Lip~(K,p) and T:Lip~(H,d;xo)--~Lip~(K,p;uo) 

and show that they have essentially the same form as those between the 

corresponding subspaces. 

This last fact follows from a topological property of the extreme points of the 

respective dual unit balls which is developed in Section 2. On the whole, these 

extreme points play a key role in our characterization of the isometries and 

Section 2 is devoted to identify them in each case. 

We have allowed ourselves two simplifications. In the first place only real 

functions are considered. It may be easily verified that for the corresponding 

complex spaces our results remain essentially the same (the only changes needed 

usually consist of replacing "0  = 4-1" by "101 = 1"). 

Secondly, our classification includes only the case in which the domain and the 

range of the isometries consist of functions which satisfy a Lipschitz condition of 

the same order. This is justified by the fact that if fl < a, the functions defined on 

a metric space (S, A) which satisfy a Lipschitz condition of order fl can be looked 

upon as the functions which satisfy a Lipschitz condition of order a on (S, A ~/~). 

For further general facts about Lipschitz function spaces the reader is referred 

to [4]. 

2. Extreme points of the unit balls of the dual spaces 

We state without proof a lemma from [2] and [3] which will serve as a basis to 

identify the extreme points of the unit dual balls of the four spaces defined in the 

introduction. 
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LEMMA 2.1. Let K be a compact Hausdorff space and A C C(K)  a closed 

subspace. Then 

(a) [3, V 8.6] Every extreme point of BA, can be extended to an element of C(K) '  

of the form O~y with y E K and 0 = +- 1. 

(b) [2, lemma 3.2] If y E K, a sufficient condition for ~y IA to be an extreme point 

of BA, is that there exists a function f E BA such that 

(i) f ( y ) =  1, 
(ii) I f ( x ) l  = 1 i f / there  exists a 0 = + 1 such that 

g(x)  = 0g(y) Vg E A. 

In this case we say that f peaks at y relative to A. 

REMARK. Lemma 2.1 clearly remains true if we replace C(K)  by Co(Y), with 

Y a locally compact Hausdorff space. 

The following theorem essentially generalizes [2, theorem 3.3]. 

THEOREM 2.1. Let (S, A) be a compact metric space, 0 < a < 1, and so E S. 

Then 

(a) ext (B lipa(S A) ,) --~" { -4- ~S /S ~ S}  U {~s,t ~ S, 0 < As (S, t) < 2}, 

(b) ext (B,p~(s,,~;so~,) = {t$~,,/s, t E S, s #  t}. 

PROOF. We first point out that if we define 

W =  S x S \d i ag (S  x S) and Z = S U W (disjoint union) 

then the map rl : lip" (S, di)---~ Co(Z) defined by 

r,f(z)=- I f ( s )  z = s E S 

I f ( s ) - f ( t )  
aS(s , t )  

z = (s, t ) E  W 

imbeds lip ~ (S,A) isometrically as a subspace of Co(Z). Similarly the map 

r~ : lip" (S, A; So)---* Co(W) defined by 

r2f(s,t) = f ( s ) - f ( t )  ( s , t )E  W 
A~(s,t) , 

imbeds lip s (S, A; So) isometrically as a subspace of Co(W). 

We now proceed with the proof of (a). It follows from Lemma 2.1 and the 

remark following it that every extreme point of B.ip~s,a), is of the form -+ 6,, 
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s E S, or 6~.,, (s, t)@ W. On the other hand the equality &., = A-"(s, t ) (& - 6,) 
shows that whenever A"(s, t) _-> 2, &.,v~ ext(B,~p,~s.~).). 

According to Lemma 2.1 (b) it remains to be shown that for each remaining 

z E Z there exists a function f~ E lip" (S, A) such that r~[~ peaks at z relative to 

lip ° (S, A). For every s E S we set/~ ( x ) =  1 -  A A(s, x). It can be easily verified 

that by choosing ,~ sufficiently small (A <min(1,diam°- ' (S)))  r~L peaks at s 

relative to r,(lip ~ (S, A)). 

If z = (s, t) ~ W, A"(s, t) < 2, we choose a real number/3, a </3 < 1, and set 

(2.1) f ,~,,(x) = A~(t' x ) -  A~(s, x) 
2A~-~ (s, t) 

Clearly ft,.,) E lip ~ (S, A), rtft,.,)(s, t) = 1 and 

I r ' f ' "" (x ) l  = I/t~"(x)l =< A"(s'2 t) < 1  

Finally, if w = (s', t') E W then 

V x E S .  

S t t I Ir l f~ , ) (w) l  = I[~,o( )-f~. , )(  ) l=  IAO(s , s ' ) - -Ao ( t , s ' )+  A° ( t , t ' ) - -A~( s , t ' ) {  
a°(,  ', c) 2a"-o(s, t)A`'(s', t') 

< 2 m i n ( a ° ( s ' , t ' ) , A ° ( s , t ) )  m i n / / A ( s , t ) ~  { A ( s ' , t ~ ° - " ~  
= 2ao-~(s , t )A~(s  ' , t ' )  = \ \ A ( s ' , t ' ) /  ' \ A(s,t)  ] ! --< 1. 

Therefore 

(2.2) lr, f~.,)(w)l <-_ 1. 

Since/3 < 1, equality occurs in the triangle inequality for A~ if and only if at 
least two of the three points involved coincide. In our case this means that 

equality holds in (2.2) if and only if w = (s, t) or w = (t, s). According to the 

definition, rifts.,) peaks at (s, t) relative to rl(lip ~ (S, A)). 
The proof of (b) is very much the same. In view of the imbedding r2, it follows 

from Lemma 2.1 that we only have to find for each (s, t ) E  W a function gts.,) 

which peaks at (s, t) relative to r2(lip ~ (S, A; so)). To that effect let us define 

g,,,)(x) = as(t' x ) -  aS(s, x) 
2a~-"(s,  t) 

as in (2.1), (a </3 < 1), and g¢s.,)(x) = ~,<,.,)(x)- ~,~,,)(So). 
The fact that go,.,) fulfils the requirements follows exactly as in the proof of part 

(a). []  
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REMARK. It is a consequence of Theorem 2.1 (and also easy to verify directly) 

that to calculate the norm of a function in lip" (S, A) (actually in Lip" (S, A) as 

well) it is sufficient to consider the Lipschitz condition locally, i.e. 

I f (s)- l :( t )]~ 
II/[1= max Ilfll~, sup 0<~o(5,<2 lX~(s, t) ! 

We shall now deal with the extreme points of BLip~(s,a)'. TO that effect we 

consider Lip ~ (S, A) as a subspace of C ( ~ Z )  (~Z  is the Stone-Cech compactifica- 

tion of Z) .  The isometric imbedding F is given by 

f(s) z = s ~ S ,  

. (z ,-  r(2!(s,rt  
(Ff is uniquely extended to /3Z as a bounded continuous function.) According to 

Lemma 2.1 (a) the extreme points of BL~pocs.a), are of the form -+ 8x, x E/3Z. It is 

easy to see, as in Theorem 2.1, that for each s E S, c5, is an extreme point of 

BLip~(S.a), and if (s, t ) E  W then 6,., is an extreme point of BLip~(S,a) • if and only if 

a~(s,t)<2. 
It is not so simple to identify exactly 

A = {6x, x E ~ Z \ Z ,  6~ E ext(Bup~(s.~r)}. 

It has been observed by J. Johnson [4, theorem 2.8] that if S is of infinite 

cardinality then A is not empty. We shall just point out that B Z \ Z  = B W \  W 
and that for~ every x E / 3 W \  W, 6~ can be viewed as a generalized derivative 

functional at some point s~ E S. Indeed, if (s ,  t~) is a net in W converging to x, 

we can assume by passing to a subnet if necessary, that s, ---> s and t, ---> t. If s # t 

we have x = (s, t) E W contrary to the assumption. Thence s = t = s~ (and sx is 

clearly independent of the chosen converging net). 

These functionals are actually called point derivatives (see [8]). In general, if 

s E S there are "many"  point derivatives associated with s, according to how 

(s,  t~) tends to (s, s). Further results concerning point derivatives appear in [4] 

and [8]. For our purpose it will suffice to partially sum up these remarks in the 

following theorem. For the remainder of this section we will denote 

F ( S ) =  { +-& /s E S}U{6, , , /s ,  t E S, O < A ~ ( s , t ) < 2 } C L i p ~ ( S ,  A) '. 

THEOREM 2.2. 

F(S)  C ext (B ~(s,~),) C os*-cl F(S).  [] 
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We shall now present a topological distinction between those extreme points 

which belong to F(S) and those which don't. 

THEOREM 2.3. Suppose ~0Eext(BL~pots, ar). Then q~ has a w*-metrizable 
neighbourhood in w*-c lF(S)  if and only if ~ E F(S). 

PROOF. Since F(S) (in its to *-topology) and Z are locally homeomorphic,  the 

proof of the " i f"  assertion is immediate. 

To prove the other implication suppose q ~  F(S). We shall show that the 

existence of a metrizable neighbourhood of ~# leads to a contradiction. Indeed, if 

such a neighbourhood exists then there is a sequence {q~,}7=a C F(S) such that 

q~. ~ ~ in the to* topology. In view of the comments leading to Theorem 2.2 we 

can assume without loss of generality that 

~p.=6~.,,, with s.--+s and t , ~ s  

(that is, ~0 is a point derivative at s). We shall arrive at a contradiction by 

constructing a function [ E Lip ~ (S, A) such that lim,~= 6 ..... (f) does not exist. 

To that effect, for every (s, t ) E  W, we consider a function L., E lip ~ (S, A) 

which satisfies 

(i) IlL,]I,, = (f , , ,(s)-f-(t))/A~(s,t)  = 1, 
(ii) IIf~,, ]l~ --< A'~( s, t). 

(For example, we can take L,, as defined by (2.1).) We now construct an 

increasing sequence {n~}~=, of natural numbers and a decreasing sequence 

{ek}~=, of positive real numbers in the following way: choose nt = 1 and having 

defined n~, k --> 1 (and denoting f~ = f'-v%)' choose ek > 0 such that whenever 

AO(s, t ) <  ek, 

I fk (s ) - fk ( t ) l< 1 
A~(s, t) = U  +2" 

Then define nk+l subject to the condition 

A ~(s . . . .  t . . . .  ) < e~ 
÷ 5 " 

Using (i) and the definition of ek and ek+l, it is easy to verify that for every k _-> 1 

a a 

(2.3) eZ+1< A"( s ..... t , ~ + , ) < ?  < A o (s.~,t.~) 
~ ~ 5 

H e n c e  EZ=I ff[~ IJ~ -< :i:Z=, a ° (s.., t.~) < ~ and  t h e r e f o r e  [ = EZ=, ( - 1)% is well 

defined in C(S). We shall now check that If/IL < o~. 
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To that effect fix s, t in S, s J  t, and denote eo = diam(S). Then, clearly 

(2.4) e~ <A(s,  t)_- < ej_~ 

for some ] _--> 1. We have 

/--1 
f(s) - f ( t )  - X" ~ (s) - fk (t)) (-- 1) k 

A"(s, t) - k'¢:'_-~ A~(s, t) 

@ ( s ) - ~ ( t ) ) +  ~ ( _ l ) k  (fk(s)-f~(t)) 
+ ( -  1)' A" (s, t) k =,+, A'~(s, t) 

Evaluating these terms separately we obtain 

j,1 2 1 1 (2.5) ~ ( -  1)kfk(s)--fk(t)[ < Ifk(s)--f~(t)[ < <_ 
k=, A~(s,t) I= , A~(s, t) =k=,2k+2=4  ' 

(2.6) I (-- 1)' @ (S) -- h (t)) I A~(s,t) --<II~L = 1, 

I (fk(S)--fk(t))[<_2 ~ jj)ekll < _ \ e ~ , / ~ o ( 1 ) = ~ .  (2.7) ~ (-~l)k A~(s, t) (e_~+~ < 1 
k = j + l  E ]  k = j + l  = 

Hence, Jlf[[o < oo. Finally we prove that limk_~6~.c,.~(f) doesn't  exist. Setting 

s = s., and t = t,,, (2.4) holds. Therefore, by (2.5) and (2.7), we have, for even j ' s  

[(s. ,)-[(t . , )>fi(s. ,)-[j( t .~)_(~= [jfk(s.,)- fk(t.,)l~ > 1 
A~(s.,,t.,) = Aa(s.,,t.,) , A~(s.,,t.,) ] = 4 "  

Similarly, for o d d / " s  we obtain 

f(s.,) - f(t.,) _< _ 1 
A~ (s.,, t.,) 4 

and thus reach the desired contradiction. [] 

REMARk. Theorem 2.2 and Theorem 2.3 remain true if we replace Lip ~ (S, A) 
by Lip" (S, A; So) and correspondingly define 

F(S) : {6,/(s, t)E W}. 

3. The isometric classification 

Throughout this section (H, d) and (K,p)  will be compact metric spaces, 

xoE H, uoE K and 0 <  a < 1. Let us point out that by the term isometry we 

denote a surjective norm preserving linear operator. We shall first characterize 
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the operators 

(3.1) T : l i p  ~ (H, d; x0)--~ lip ~ (K, p; u0) 

which are isometrics. 

THEOREM 3.1. A n  operator T as in (3.1) is an isometry if and only if there 

exists a 0 = +_ 1 and a one to one surjection ~ : K ~ H satisfying 

(3.2) O(u, v ) =  Cd(q~(u), q~(v)) Vu, v E K 

with C = d iam(K) /d iam(H) ,  such that 

(3.3) T g ( u ) =  OC"(g(~(u)) -g(q~(uo)))  Vu ~ K, Vg El ip~(H,d;xo) .  

PROOF. It is trivial to see that an operator  given by (3.3) is an isometry, so we 

shall only prove the converse statement. Assume T is an isometry. It is a known 

fact that T* maps ext(Bt~p°(K,p,,o),) onto ext(B,pocn, d, xo~, ). In other words defining 

WK = K x K \ d i a g ( K  × K ) ,  there exist maps yj:WK---~H, j = 1,2, such that 

T*6,,o = 6~,~.,~,~,,~ for each ( u , v ) E  WK (see Theorem 2.1(b)). Since clearly 

y~(u, v ) =  y2(v, u)  we conclude the existence of a map y : W~: ---~H such that 

T*6.,o = ~,.o~,~co,.~, (u, v) E W~. Take now three different elements u, v, w of K. 

Since 

p°(u, w)~.,w -e°(v, w)~.,w 
8.,o = p ~ ( u , v )  

we have 

(3.4) p~(u, w)  r~ _ p"(v,  w) 
d~(T(u, w), y(w,  u)) t°~¢'') 6,tw.,,)- d~(y(v ,  w),(w,  v)) (,~,,o,w,- 6,,w,o,) 

T*3,,o = p"(u, v) 

Now, T*6,,o is supported by at most two points in H, and since the fix's are 

linearly independent functionals two of the terms must cancel, and thus 

(3.5) ~,(u, w) = ~,(v, w) 

or 

(3.5)' ~,(w, u)  = ~,(w, v). 

The next (purely combinatoric) lemma establishes that (3.5) always holds or 

(3.5)' always holds ("always" meaning for every choice of distinct elements u, v, 

w E K ) .  
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LEMMA 3.1. Let S and U be 2 sets containing at least three distinct members, 

and y :S  x S \d iag(S  x S)--* U a map which satisfies y ( s , s ' ) ~  y ( s ' , s )  for all 

s ~  s' such that the map F: S × S\d iag(S  × S)---~ U × U \ d i a g ( U  x U) defined 

by F(s, s') = (y(s, s'), y(s ' ,  s)) is one to one. Assume that for every three distinct 

elements of S, s~, s2 and s3, 

(3.6) y(s2, s,) = y(s3, s,) 

Or 

(3.6)' y(s,, s2) = y(si, s3). 

Then either (3.6) holds for all distinct (sl, s2, s3) or (3.6') holds for all distinct 

s2, s3). 

We shall now proceed with the theorem's proof, assuming for the time being 

that the lemma has been established. Clearly our map satisfies the lemma's 

conditions by which we can conclude that y(u, v) is a function of only one of its 

arguments. 

Suppose that y(u, v) = ~p(u). It follows that 

(3.7) T*3~.~ = 8~..~.~,.~ = 3~(,~.~ 

and to get the cancellation in (3.4), we must have 

p(u,w) p(v,w) 
d(~p(u), q~(w)) d(~p(v),~p(w))" 

In other words, there exists a C > 0  such that (3.2) is satisfied and clearly 

C = diam (K)/diam (H). 
Finally, substituting u0 for v in (3.7) we obtain (3.3) with 0 = 1. Similarly, had 

w e a s s u m e d y ( u , v ) = ~ ( v ) w e w o u l d h a v e a r r i v e d a t ( 3 . 3 ) w i t h O =  - 1 .  [] 

PROOF OF LEMMA 3.1. First we shall show that if (3.6) holds for some triple 

(s~, s2, s3), then y(s, s~)= y(s2, s~) for all s E S (with the equivalent assertion 

holding if (3.6') is true for some triple). 

Assume, to the contrary, that there exists an s E S such that y(s~,s)= 

y(sl, s2). There are two possibilities: 

(i) y(s~, s )=  y ( s ,  s3) and thus y(s,,  s2)= y(Sl, s3) which together with (3.6) 

implies that F(s~, s2) = F(&, s3), contradicting the assumption that F is one to one. 

(ii) y(s, st) = T(S3, SI). From (3.6) it then follows that "y(s, s1) = "y(S2, Sl), a 

contradiction again. 

Thus, for each s E S, either 
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(a) y(s ' ,  s ) =  y(s", s) for all s', s" in S, or 

(b) "y(s, s ' ) =  y(s, s") for all s', s" in S. 

We want to show that either (a) holds for every s or (b) holds for every s. 

Assume this is not so, that is, choose st and s2 such that for all s '  and s" in S, 

y(s ' ,  s~) = y(s", s,) and y(s2, s') = y(Sz, s"), and fix s3E S (s3# s~, Sz). Then 

(3 .8)  -/(s3, s , )  = s , )  = s3). 

Now, if (a) holds (for s = s3) then (3.8) yields y(s3, Sl) = y(s2, s3) = y(Sl, s3). 

Similarly if (b) holds we obtain from (3.8) y(s3, s~)= y(s3, s~)= y(s2, s3). 

In both cases a contradiction to the iemma's assumption is reached. []  

Let us now consider the isometry characterization for operators 

(3.9) T : l i p  ~ (H, d)---> lip" (K, p). 

In this case, not all isometries are of the form (compare with (3.3)) 

(3.10) T f ( u )  = OCf(  (u ) ) ,  0 = +_ 1, C > O. 

Consider the following example: let H = K = {z E C/I z I = 1} t../{0} and d and 

p the natural metric. Choose 0oE [0,27r) and define an operator  T by 

Tf(O) = f(O), 

Tf(e ,o) = f(0) - f(e"°+°,,)). 

It is easy to verify that T is an isometry, not of the form (3.10). On the other 

hand, for an operator  of the form (3.10) to be an isometry we must have C = 1, 

and the map q~, rather than satisfy (3.2), need only preserve local distances. To 

stress this point, we present a second example. 

Let a = 1/2 and H = K = [0,5] C R;  d is the natural metric on H and p is 

defined by 

l x - Y l  if I x - y l = < 4 ,  
p (x ,y )  = [ 

2 V ] x - - y  I if ] x - y [ > 4 .  

By the remark after Theorem 2.1, only "small" distances need to be 

considered in determining II/11o for any f (in our case distances no larger than 4), 

and therefore the identity operator  is an isometry. However  q~ (the identity map 

in [0, 5]) is not globally distance preserving. 

Based on these two examples we present the following definitions. 

DEFIr~mON 3.1. We call an operator  as in (3.9) an elementary isometry of the 
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first type if and only if there exist 

(a) 0 : K - - ~ { -  1, 1} (we denote 0, instead of 0(u)), 

(b) a bijection ~p : K -~ H, 

which satisfy, for all (u, v ) E  W~:, 

(3.11.a) p"(u, v ) < 2  ¢:¢, d~(q~(u), q~(v)) < 2, 

(3.11.b) p ~ ( u , v ) < 2 ~  0, = 0~, 

(3.11.c) p°(u, v)<2 ~ p(u, v)= d(~(u), ~(v)), 

such that 

(3.10') Tf (u)=O, f (~(u) )  V f ~ l i p " ( H , d ) ,  V u E K .  

DEFINITION 3.2. A metric space (S, A) is said to be 1-centered if there exists 

an soE S such that A(s, so) = 1, V s J  so. In this case we say that so is the center of 

S and denote S = S\{s0}. 

DEFINITION 3.3. If (H, d) and (K,p)  are compact 1-centered metric spaces 

(with respective centers h0 and k0), we call an operator T as in (3.9) an 

elementary isometry of the second type if and only if there exists a 0 = - 1 and a 

distance preserving bijection ~p : K --~ H such that, for all f E lip ~ (H, d), 

Tf(ko) = Of(ho), 

Tf(k )= O(f(ho)- f(~v(k ))), k # ko. 

NOTATION. If (S,A) is a metric space, $1 , . . . , S .  are n disjoint 1-centered 

subspaces and So=S\U~=1S~, we shall write S =  UT=o~)S~ if and only if 

A~(S~,S\S,)-->2, i =  1 , - . - , n .  (In other words, if and only if the 1-centered 

"components"  of S are sufficiently isolated among themselves and from the rest 
of s.) 

One can check, generalizing the two given examples, that these two types of 

"elementary isometries" are in fact isometries. Actually all the isometries are 

generated in a certain sense by these elementary isometries. More precisely: 

THEOREM 3.2. An operator T :lip s (H, d ) ~  lip" (K, p) is an isometry if and 

only if: 
(a) T is an elementary isometry of the first type, or 
(b) the following conditions are satisfied: 
(i) there exist n >= 1, H , . . . , H ,  1-centered subspaces of H and K1, ' . . ,  K, 
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1-centered subspaces of K such that if rio = H \ U ~=~ Hi and Ko = K \ U ~=1 K, then 

n n 

H =  U (~H. and K =  U O K , ;  
i =0 i =0 

(ii) there exist T~ : lip" (H,, d)--> lip ~ (K,, 0), 1 <- i <= n elementary isometries oJ 
the second type and To : l ip ~ (H0, d)---> lip ~ (Ko, p) an elementary isometry of the 

first type, such that for all [ E lip" (H, d) 

(Tf) IK, = T, (f In,) , i = O , . " , n .  

PROOF. It  is not  difficult to verify that  an ope ra to r  given by (a) or  (b) is an 

isometry .  We  shall p rove  the "on ly  if" assert ion.  We  again m a k e  use of the fact 

that  

T*(ext  (B,:(K,o),)) = ext (B lipa(H,d)'). 

There  are two possibilities: 

Case L T*({+_Sy/y~K})C{+_8~/xEH}.  In this case we can write 

(3.12) T*8y = 0y&(r) Vy E K 

where  ~0 : K ~ H  is a one  to one  m a p  and 0y = + l for  all y E K. 

W e  r emark  that  the above  inclusion is an equali ty,  since by (3.12) for  each pair  

(y~, y2) in K, 

T8 ,,,,~ = p-° (y,, y~) (O,,&(,,) - O,~&(,~) 

and no 8x can be ob ta ined  in this way. Assume  now that  y , y ' E K  and 

0 <  p~(y,  y ' ) < 2 .  Then  

O~&,~- Oy,,8~, ,, 
T*Sr, ~, = P (y, Y ) ~ E exp(B, :m,a) , )  

whence  0y = 0y, and p(y,  y ' )  = d ( ~ ( y ) ,  ~ (y ' ) ) .  Since (T*)  ' is given by (T*)--~Sx = 

O, .(x)8,-,(x), de(x, x') < 2 ~ p~(q~-l(x), ~ - t ( x ' ) )  < 2. T h e r e f o r e  (3.11) holds and 

since (3.12) is ano the r  way of writing (3.10'), T is an e l emen ta ry  i sometry  of the 

first type. 

CaseIL There  e x i s t s a  y ' ~ K  and Xo, X ~ @ H  such that  T * S y , - 8  ..... ;,. Let  

T*~b = 8~, (~b ~ ext (B. :~ .p) , ) ) .  We  then have  T*(d"(xo, x~)Sy,- ~ )  = - 8.;. and 

there fore  
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A = (d~(xo. x:,),~y- 4 )  ~ ext (B.po~K.p),). 

We  can thus conclude that  e i ther  

(i) ::lyo~ K such that th = ~y,,, or  

(ii) : l yoE  K such that  q, = 6y,.,,. 

In e i ther  case we have  

(3.13) d(xo, x~) = p(y ' ,  y,,) = 1. 

We now deno te  U = { y  E K / p " ( y , y ' ) < 2 }  and assume that  possibili ty (i) 

holds. Le t  y E U (not y0 or y ') .  Deno t ing  ~ = T*,~  we have  

ff - t35,.4 ' (3.14) T * ~ , ,  = p , ( y ,  y,)  E ext (B,oo¢,,~,,). 

Since # can ' t  be  &~, or - 8x0 there  must  exist an x E H such that  p~ = &~,,x or  

# = ~ ..... . If  /.t = ~,,x,, and denot ing  r / =  (d" (x , x~ , )Sy -  ~r',ro), we would have  

T * ¢  =~x ,  by which rlEext(B,p°tK, ,) ,  ), an impossibil i ty.  H e n c e  /x =&~ .... 

T*(~r , , -d~(xo,  X)~y) = ~x and thus d(xo, x )  = p(yo, y )  = 1. In o the r  words  

(3.15) U\{yo} = {y : P(Y, Y0) = 1}. 

Also,  f rom (3.14) we obtain  that  d(x,  x;)  = P(Y, Y'). We  can the re fore  define a 

dis tance preserv ing  surject ion ~ :  U \{yo}--~ { x : d ( x ,  x0)= 1} by means  of the 

equat ion 

(3.16) T*~ r = ~x,,,~y) Vy E U\{y0}, 

Similarly, if it is possibili ty (ii) that  holds, we also obtain  (3.15), and in this case 

the dis tance preserving surject ion ~ : U\{yo}-- -~{x:d(x ,  x ; ) =  1} is defined by 

(3.16') T*~y = ~(,~,~;, Vy @ U\{yo}. 

Now,  for  each y E K  we deno te  U ( y ) = { y ' : p ~ ( y , y ' ) < 2 } .  Cons ider  the 

family o~ = { U ( y ) : : l x  E H such that  T*~y = +-~}.  F r o m  K ' s  compac tness  we 

conclude that  there  exist Y h " ' , Y m  E K such that K =  U~'=j U(y~), with 

U(y~) E ~ for  each i. Wi thou t  loss of  genera l i ty  we may  assume that  there  exists 

an in teger  n, 1 <= n <= m, such that  for  each i not larger than n there  exists a 

y ' ,E  U(y, )  such that  T*~y; is of the fo rm 8~.~,. 

Now fix i, 1 - i =< n. Deno t ing  K~ = U(y ; )  it follows f rom (3.15) that  K~ is a 

1-centered space  (y, being its center) ;  then,  define & = _+ 1 and x~ E H by means  

of the equa t ion  

(3.17) T*,Sr, = 0,~, 
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and let Hi be the 1-centered metric space given by H~ = {x,} U {x : d(x, x~) = 1}. It 

follows from the preceding discussion (see (3.16) and (3.16')) that there exists a 

distance preserving surjection ~p, : /~  ~/ ' t~  such that 

(3.18) T*6y = 0,~x,.~,~y,~ Vy ~ / ~ .  

Clearly K~ and ~ are compact, so if we define 

by 

T~ :lip" (/at,, d)---~ lip '~ (K,,p) 

T ~ / ( y , )  = O,f(x,), 

T~f(y)= E(/(x,)-f(~o,(y))), y EK,,  

T~ is an elementary isometry of the seond type. Moreover, from (3.17) and (3.18) 

it follows that, for all f G lip ° (H, d), (T[)IK, = T~ (/lu.). 
We now consider the (compact) subspaces Ho=H\UT=IIZL and Ko= 

K \  O~'=,/~. From the definition of Hi, K, i = 1 , . - . ,  n, it follows that for each 

y E Ko there exists a 0y = + 1 and a bijection ~o: Ko--~H,, such that 

(3.19) T* 8y = Oy6,~,,~y ~. 

Just as in Case I we obtain (3.11) (replacing q~ by ~p,,). We now define the 

elementary isometry of the first type To:lip" (H,,, d)---~ lip ° (Ko, p) by Tof(y)= 
0y/(q~o(y)); it follows from (3.19) that (7"[)I~,, = To([ In,,) for all [ E lip ~ (H, d). 

Finally, the fact that K = U~'=o(~K~ and H =  U~'=o(~H~ follows basically 

from (3.15). We leave the details of the verification to the reader. The proof is 

now complete. [] 

Before considering the isometries in the remaining cases, we compare 

Theorem 3.2 with results obtained in [2] and [9]. In [2] H and K are the circle in 

R 2 with unit circumference. The only isometries obtained were elementary 

isometries of the first kind since there are no 1-centered subspaces. Moreover,  in 

this case the map ~, must assume the form 0 ~ (00 + 0) or 0 ~ (00-  0) (in polar 

representation) for some 0o, 0 <= 0o < 27r. In general, for an isometry to possess a 

"second type component" ,  the involved metric spaces must have a very 

particular structure. 

In [9] H and K were assumed to be Riemannian manifolds. Again all 

isometries were found to be elementary isometries of the first type; furthermore 

~0 turns out to be globally distance preserving (this follows from the fact that the 
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Riemannian metric is completely determined by small distances, which are 

preserved by ~0). 

We now turn to operators of the form 

(3.20) 

and 

(3.21) 

T : Lip ~ (/-/, d ; Xo) ~ Lip ~ (K, p; Uo) 

T :  Lip" (/4, d)--~ Lip`` (K,p).  

We claim that for T as in (3.20) or (3.21) to be an isometry the "same" 

necessary and sufficient conditions hold as in Theorem 3.1 and Theorem 3.2 

respectively. (We assume from now on that the terms lip ~ (H, d), lip ~ (K, p), 

lip" (H, d;x0) and lip" (K,p;  Uo) are respectively replaced by Lip '~ (H, d), 

Lip ~ (K, p), Lip`` (H, d;  Xo) and Lip" (K, p; Uo) in Theorems 3.1 and 3.2 and in 

Definitions 3.1 and 3.3.) Indeed, considering Theorem 3.2, the only difference 

which can arise in its proof is that it is not a priori clear that T*Sy belongs to 

F ( H )  (see notation in Section 2) for every y. However, this fact is guaranteed by 

Theorem 2.3: T*, being a homeomorphism in the respective to *-topologies, 

maps points which possess metrizable neighbourhoods in to*-cl F ( K )  to points 

with the same property in to *-cl F(H) .  That is to say T*(F(K))  C F ( H )  (actually 

equality holds). Once we know that T*(F(K))  = F(H)  the proof is the same as in 

Theorem 2.3. 

The same considerations apply for isometries of the form (3.21). Summing up 

we obtain 

THEOREM 3.3. (I) An  operator as in (3.20) is an isometry if and only if there 

exists a 0 = + 1 and a bijection ~o : K -* H satisfying p(u, v) = Cd(~(u) ,  ~p(v)), 

u, v E K (with C = diam(K)/diam(H))  such that, for all g E Lip`` (H, d) and all 

u E H ,  

Tg (u ) = OC ~ (g (~ (u )) - g (~ (Uo))). 

(II) A n  operator as in (3.21) is an isometry if and only if 

(a) T is an elementary isometry of the first type, or 

(b) the following conditions are satisfied: 

(i) there exist n > 1, H 1 , . . - , H ,  1-centered subspaces of H and K I , . . . ,  K,  

1-centered subspaces of K such that if /40 = H \  U~=~/-/~ and Ko = K \  U~=~K~, 

then 

n rt  

H =  U e I-I, and K =  U @ K , ;  
i = 0  i = 0  
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(ii) there exist T~ :L ip  ~ (Hi, d ) - ~ L i p  ~ (Ki, p),  1 <-_ i <= n elementary isometries 

of the second type and To : Lip ~ (H0, d)  ~ Lip ~ (K0, p) an elementary isometry of 

the first type, such that for all f E Lip" (H, d)  

(Tf)IK, = T~(fln,), i = 0 , - . . , n .  
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